Integer Arithmetic

NEW! Now with Mesh Treesl!!!

BouAyapnc lNavayiwTtng
MwA T1ETPOC

Complexity

Time Procs Work Efficiency

Multiply | O(logN) | O(NA2) | O((N*2) logN) O(N)

With Pipline | The same The Same | O(N"2) O(N/(logN))

» Best serial O(NlogN)

« Really Efficient algorithms later with Furrier Transforms +
Hypercube Networks

 All the algorithms have similar inefficiencies (or worst)

Multiply 2 N-bit numbers

* Mesh of trees N*(2N-1) with row, column and
diagonal trees.

B B i i
OO0 OO0 wd
OO 0woOd

Q0T 000

1st diagonal " 1stcolumn

Last diagonal

Multiply - The Steps

(Leta=a_1,...,a Nb=b 1,...,.b N)

 Enter a_iinroot of | row tree
Enter b_iin root of N-i+1 diagonal tree
Propagate downwards leaves get a_i*b |

« Sum the bits of each column in the column root (starting
with less significant bit).

2N-k col has s _k=s {k,log(N+1)}....s _{k,1}
 Send all s_k to leaf in the first row of the column, and

sum them with carry-save addition, the last two with
carry lookahead.

Step 1

a=a_1,...a_ Nb=b 1,...b n

Enter a_i in root of i row tree

Enter b_i in root of N-i+1 diagonal tree
Propagate downwards leaves get a_i*b_|

We send them down the trees and multiply them when they
intersect in the leaves.

logN+1 steps to reach the leaves

O O

1st diagonal Last diagonal 1st column

A
L

Step 2

Sum the bits of each column in the column root.
Let 2N-k column has s_k=s {k,logN+1}...s {k,1}

Letw I=s {2N-1,I...s {1,}

w_| are the bits of s’ s as seen by rows from the least
significant w_1 to the most significant w_{2N-1}

O O O O

O O

1st diagonal

O O

Last diagonal

1st column

S’'sand W’'s

s {2N-1} J.].1S 1
w_1-> s {2N-1,1} A.1.1s_{1,1}
w_2-> s {2N-1,2} A.1.1s_{1,2}

w_{2N-1}->|s {2N-1,logN+1}|.|.|.|s_{1,logN+1}

Step 3

 Send the bits of s in the first row of the
column. (logN)

« Sowe getw i's. We sum them and shift
them right for each new we get with Carry-
Save addition. (LogN)

* We sum the last two with Carry-
lookahead. (2LogN)

Example

We get w_1. We shift it and get the last bit
which is the last bit of the result. Now we
have (w_1)/2 and we get w_2 we add the
with Carry-Save addition and shift them
getting the second bit of the result. And so
on. (When we get the last of w's we have
to make a “real” addition.)

Division in O(log”"2N)

Simple Newton lteration

X _{i+1} = x_ 1+ f(x_1)/F(x_1)

x=1/y => f(x)= 1-yx f'(x)=-y

X_{i+1}=x_i +1/y(1-yx_1i)

With 1/y=x_1I

X_{i+1}=2x_1-y(x_1)"2

O(logN) operations in each step

O(logN) steps for N bits O(log”2N) complexity

Division in O(logN)

* Using Chinese Remaindering Theorem

* Faster asymptotically but to much look
aheads, not usable mainly theoretical

value.

Division ldea

y=1-¢ 0<e<1/2
1/y=1/(1-€)=1+e+eM2+eM3+. ...

X _1=1+e+eM2+. €N,

| 1/y-X_i|=eMi+ 1+, =< 1/2Mi+1}+.. =<2/
If we know N+logN bits of €¢*i we sum them
in logN (and find X _n). We can parallely
compute € so it suffices to compute €7 in
O(logN) steps and we get O(logN)
complexity.

Chinese Remainder Theorem

Let primesp 1,p 2,...p_S
Let o=<X<P

The residue vector for every X with p I'sis
unique and from it X can be reconstructed

X=Sum{i=1to s} (B i x i mod P)
B 1=(P/p a1 a i=(P/p)1 modp i

Prime Number Theorem

 Number of primes less than N is
©(N/logN)

|dea

Z™N is at most 2*{N”"2} and it has at most N*2 bits

P=p_1,...p_{N"2} the multiplication of the first N*2
primes

Instead of Z*N we compute Z*N mod p i for every p i
which has O(logN) bits and we recontrsuct Z*"N mod P
and then the result.

Because p_i are O(logN) bits we can construct lookup
tables for every operation we need to do. And each
operation will be a lookup in a poly (logN) table.

We see that although it is log(N) we must have
precomputed to much information.

	Integer Arithmetic
	Complexity
	Multiply 2 N-bit numbers
	Multiply - The Steps
	Step 1
	Step 2
	S’s and W’s
	Step 3
	Example
	Division in O(log^2N)
	Division in O(logN)
	Division Idea
	Chinese Remainder Theorem
	Prime Number Theorem
	Idea

