Integer Arithmetic

NEW! Now with Mesh Trees!!!

Βούλγαρης Παναγιώτης Μωλ Πέτρος

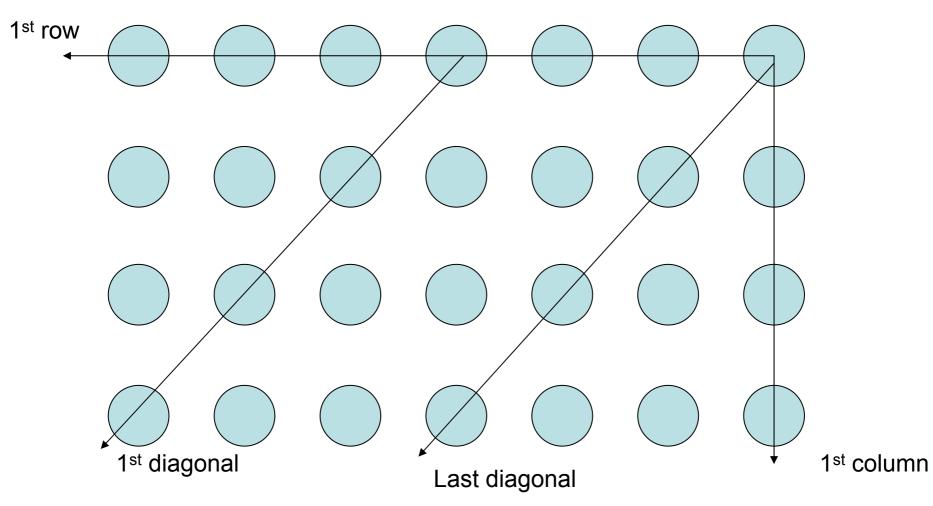
Complexity

	Time	Procs	Work	Efficiency
Multiply	O(logN)	O(N^2)	O((N^2) logN)	O(N)
With Pipline	The same	The Same	O(N^2)	O(N/(logN))

- Best serial O(NlogN)
- Really Efficient algorithms later with Furrier Transforms + Hypercube Networks
- All the algorithms have similar inefficiencies (or worst)

Multiply 2 N-bit numbers

 Mesh of trees N*(2N-1) with row, column and diagonal trees.



Multiply - The Steps

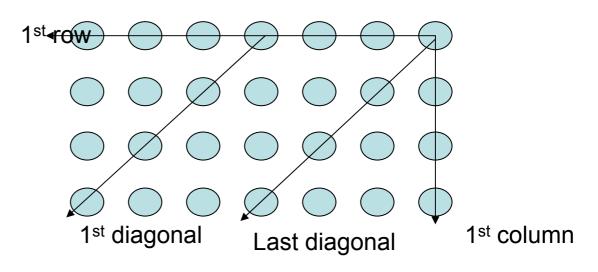
- (Let a=a_1,...,a_N b=b_1,...,b_N)
- Enter a_i in root of I row tree
 Enter b_i in root of N-i+1 diagonal tree
 Propagate downwards leaves get a_i*b_j
- Sum the bits of each column in the column root (starting with less significant bit).

2N-k col has s_k=s_{k,log(N+1)}....s_{k,1}

 Send all s_k to leaf in the first row of the column, and sum them with carry-save addition, the last two with carry lookahead.

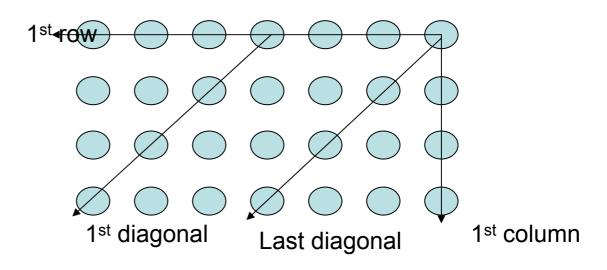
Step 1

- a=a_1,...a_N b=b_1,...,b_n
- Enter a_i in root of i row tree
 Enter b_i in root of N-i+1 diagonal tree
 Propagate downwards leaves get a_i*b_j
- We send them down the trees and multiply them when they intersect in the leaves.
- logN+1 steps to reach the leaves



Step 2

- Sum the bits of each column in the column root.
- Let 2N-k column has s_k=s_{k,logN+1}...s_{k,1}
- Let w_I=s_{2N-1,I...s_{1,I}
- w_I are the bits of s' s as seen by rows from the least significant w_1 to the most significant w_{2N-1}



S's and W's

	s_{2N-1}	-		•	s_1
w_1->	s_{2N-1,1}	•	•	-	s_{1,1}
w_2->	s_{2N-1,2}	•	•	-	s_{1,2}
	•	•	•	-	-
	-	•	•	-	-
w_{2N-1}->	s_{2N-1,logN+1}			•	s_{1,logN+1}

Step 3

- Send the bits of s in the first row of the column. (logN)
- So we get w_i 's. We sum them and shift them right for each new we get with Carry-Save addition. (LogN)
- We sum the last two with Carrylookahead. (2LogN)

Example

We get w_1. We shift it and get the last bit which is the last bit of the result. Now we have (w_1)/2 and we get w_2 we add the with Carry-Save addition and shift them getting the second bit of the result. And so on. (When we get the last of w's we have to make a "real" addition.)

Division in O(log²N)

- Simple Newton Iteration
- $x_{i+1} = x_i + f(x_i)/f'(x_i)$
- x=1/y => f(x)= 1-yx f'(x)=-y
- x_{i+1}=x_i +1/y(1-yx_i)
- With 1/y=x_i
- x_{i+1}=2x_i -y(x_i)^2
- O(logN) operations in each step
- O(logN) steps for N bits O(log^2N) complexity

Division in O(logN)

- Using Chinese Remaindering Theorem
- Faster asymptotically but to much look aheads, not usable mainly theoretical value.

Division Idea

- y=1-ε 0<ε<1/2
- $1/y=1/(1-\epsilon)=1+\epsilon+\epsilon^{2}+\epsilon^{3}+...$
- X_i=1+ε+ε^2+...ε^i.
- $|1/y-X_i|=\epsilon^{i+1}+...=<1/2^{i+1}+...=<2^{-i}$
- If we know N+logN bits of ε[^]i we sum them in logN (and find X_n). We can parallely compute ε[^]i so it suffices to compute ε[^]i in O(logN) steps and we get O(logN) complexity.

Chinese Remainder Theorem

- Let primes p_1,p_2,...p_s
- Let o=<X<P
- The residue vector for every X with p_i's is unique and from it X can be reconstructed
- X=Sum{i=1 to s} (β_i x_i mod P)
- $\beta_i = (P/p_i) a_i \alpha_i = (P/p_i)^{-1} \mod p_i$

Prime Number Theorem

 Number of primes less than N is Θ(N/logN)

Idea

- Z^N is at most 2^{N^2} and it has at most N^2 bits
- P=p_1,...p_{N^2} the multiplication of the first N^2 primes
- Instead of Z^N we compute Z^N mod p_i for every p_i which has O(logN) bits and we recontrist Z^N mod P and then the result.
- Because p_i are O(logN) bits we can construct lookup tables for every operation we need to do. And each operation will be a lookup in a poly (logN) table.
- We see that although it is log(N) we must have precomputed to much information.