
Integer Arithmetic

NEW! Now with Mesh Trees!!!

Βούλγαρης Παναγιώτης
Μωλ Πέτρος

Complexity
Time Procs Work Efficiency

Multiply O(logN) O(N^2) O((N^2) logN) O(N)

With Pipline The same The Same O(N^2) O(N/(logN))

• Best serial O(NlogN)
• Really Efficient algorithms later with Furrier Transforms +

Hypercube Networks
• All the algorithms have similar inefficiencies (or worst)

Multiply 2 N-bit numbers
• Mesh of trees N*(2N-1) with row, column and

diagonal trees.

1st column1st diagonal Last diagonal

1st row

Multiply - The Steps
(Let a=a_1,…,a_N b=b_1,…,b_N)
• Enter a_i in root of I row tree

Enter b_i in root of N-i+1 diagonal tree
Propagate downwards leaves get a_i*b_j

• Sum the bits of each column in the column root (starting
with less significant bit).
2N-k col has s_k=s_{k,log(N+1)}….s_{k,1}

• Send all s_k to leaf in the first row of the column, and
sum them with carry-save addition, the last two with
carry lookahead.

Step 1
• a=a_1,…a_N b=b_1,…,b_n
• Enter a_i in root of i row tree

Enter b_i in root of N-i+1 diagonal tree
Propagate downwards leaves get a_i*b_j

• We send them down the trees and multiply them when they
intersect in the leaves.

• logN+1 steps to reach the leaves

1st column1st diagonal Last diagonal

1st row

Step 2
• Sum the bits of each column in the column root.
• Let 2N-k column has s_k=s_{k,logN+1}…s_{k,1}
• Let w_l=s_{2N-1,l…s_{1,l}
• w_l are the bits of s’ s as seen by rows from the least

significant w_1 to the most significant w_{2N-1}

1st column1st diagonal Last diagonal

1st row

S’s and W’s

s_{2N-1} . . . s_1

w_1-> s_{2N-1,1} . . . s_{1,1}

w_2-> s_{2N-1,2} . . . s_{1,2}

.

.

w_{2N-1}-> s_{2N-1,logN+1} . . . s_{1,logN+1}

Step 3

• Send the bits of s in the first row of the
column. (logN)

• So we get w_i ‘s. We sum them and shift
them right for each new we get with Carry-
Save addition. (LogN)

• We sum the last two with Carry-
lookahead. (2LogN)

Example

We get w_1. We shift it and get the last bit
which is the last bit of the result. Now we
have (w_1)/2 and we get w_2 we add the
with Carry-Save addition and shift them
getting the second bit of the result. And so
on. (When we get the last of w’s we have
to make a “real” addition.)

Division in O(log^2N)

• Simple Newton Iteration
• x_{i+1} = x_i + f(x_i)/f’(x_i)
• x=1/y => f(x)= 1-yx f’(x)=-y
• x_{i+1}=x_i +1/y(1-yx_i)
• With 1/y=x_i
• x_{i+1}=2x_i -y(x_i)^2
• O(logN) operations in each step
• O(logN) steps for N bits O(log^2N) complexity

Division in O(logN)

• Using Chinese Remaindering Theorem
• Faster asymptotically but to much look

aheads, not usable mainly theoretical
value.

Division Idea

• y=1-ε 0<ε<1/2
• 1/y=1/(1-ε)=1+ε+ε^2+ε^3+….
• Χ_i=1+ε+ε^2+…ε^i.
• |1/y-X_i|=ε^{i+1}+… =< 1/2^{i+1}+…=<2^-i
• If we know N+logN bits of ε^i we sum them

in logN (and find X_n). We can parallely
compute ε^i so it suffices to compute ε^i in
O(logN) steps and we get O(logN)
complexity.

Chinese Remainder Theorem

• Let primes p_1,p_2,…p_s
• Let o=<X<P
• The residue vector for every X with p_i’s is

unique and from it X can be reconstructed
• X=Sum{i=1 to s} (β_i x_i mod P)
• β_i=(P/p_i) a_i α_i=(P/p_i)^-1 mod p_i

Prime Number Theorem

• Number of primes less than N is
Θ(N/logN)

Idea
• Z^N is at most 2^{N^2} and it has at most N^2 bits
• P=p_1,…p_{N^2} the multiplication of the first N^2

primes
• Instead of Z^N we compute Z^N mod p_i for every p_i

which has O(logN) bits and we recontrsuct Z^N mod P
and then the result.

• Because p_i are O(logN) bits we can construct lookup
tables for every operation we need to do. And each
operation will be a lookup in a poly (logN) table.

• We see that although it is log(N) we must have
precomputed to much information.

	Integer Arithmetic
	Complexity
	Multiply 2 N-bit numbers
	Multiply - The Steps
	Step 1
	Step 2
	S’s and W’s
	Step 3
	Example
	Division in O(log^2N)
	Division in O(logN)
	Division Idea
	Chinese Remainder Theorem
	Prime Number Theorem
	Idea

